Skip to contents

Compute summary statistics for interpolation_grid

Usage

# S3 method for class 'interpolation_grid'
summary(object, ...)

Arguments

object

object of class interpolation_grid

...

further specifications, see summary for details

Examples

library(sf)

# Read source points
source_pts <- st_read(
  dsn = system.file("gpkg/data-prefecture.gpkg", package = "distanamo"),
  layer = "prefecture", quiet = TRUE
)

# Read image points
image_pts <- st_read(
  dsn = system.file("gpkg/data-prefecture.gpkg", package = "distanamo"),
  layer = "image-points", quiet = TRUE
)

# Read the background layer to deform
background_layer <- st_read(
  dsn = system.file("gpkg/data-prefecture.gpkg", package = "distanamo"),
  layer = "departement", quiet = TRUE
)

# Create the interpolation grid
igrid <- dc_create(
  source_points = source_pts,
  image_points = image_pts,
  precision = 2,
  bbox = st_bbox(background_layer)
)

# Plot various depictions of the interpolation grid
plot(igrid)





# Useful information about the interpolation grid
summary(igrid)
#> Summary of the interpolation grid:
#> Number of cells: 441 
#> Precision: 50462.76 (α = 2) 
#> Deformation strength: 1.041534 
#> Mean absolute error: 3734.717 
#> RMSE (interp - image): 4989.972 
#> RMSE x (interp - image): 4060.84 
#> RMSE y (interp - image): 2899.896 
#> RMSE (interp - source): 42725.87 
#> RMSE x (interp - source): 32080.25 
#> RMSE y (interp - source): 28219.8 
#> R squared: 0.9997285