import { scaleSqrt } from "d3-scale";
import { arc } from "d3-shape";
import { max, descending } from "d3-array";
import { geoPath, geoIdentity } from "d3-geo";
const d3 = Object.assign(
{},
{ scaleSqrt, max, descending, geoPath, geoIdentity, arc }
);
import { create } from "../container/create";
import { render } from "../container/render";
import { random } from "../tool/random";
import { radius as computeradius } from "../tool/radius";
import { centroid } from "../tool/centroid";
import { tooltip } from "../helpers/tooltip";
import { viewof } from "../helpers/viewof";
import {
camelcasetodash,
unique,
getsize,
check,
implantation,
propertiesentries,
detectinput,
order,
} from "../helpers/utils";
/**
* @function halfcircle
* @description The `halfcircle` function allows to create a layer with rotable half-circles from a geoJSON. The function adds a layer to the SVG container and returns the layer identifier. If the container is not defined, then the layer is displayed directly.
* @see {@link https://observablehq.com/@neocartocnrs/circle-mark}
*
* @property {object} data - GeoJSON FeatureCollection
* @property {string} [id] - id of the layer
* @property {number[]} [pos = [0,0]] - position of the half-circle to display a single circle
* @property {number} [dx = 0] - shift in x
* @property {number} [dy = 0] - shift in y
* @property {number} [angle = 0] - angle of the half circle
* @property {number|string} [r = 10] - a number or the name of a property containing numerical values
* @property {number} [innerRadius = 10] - inner radius
* @property {number} [cornerRadius = 2] - corner radius
* @property {number} [k = 50] - radius of the largest half-circle (or corresponding to the value defined by `fixmax`)
* @property {number} [fixmax] - value matching the half-circle with radius `k`. Setting this value is useful for making maps comparable with each other
* @property {string|function} [sort] - the field to sort circles or a sort function
* @property {boolean} [descending] - circle sorting order
* @property {string} [coords = "geo"] - use "svg" if the coordinates are already in the plan of the svg document
* @property {string|function} [fill] - fill color. To create choropleth maps or typologies, use the `tool.choro` and `tool.typo` functions
* @property {string|function} [stroke] - stroke color. To create choropleth maps or typologies, use the `tool.choro` and `tool.typo` functions
* @property {boolean|function} [tip = false] - a function to display the tip. Use true tu display all fields
* @property {boolean} [view = false] - use true and viewof in Observable for this layer to act as Input
* @property {object} [tipstyle] - tooltip style
* @property {*} [*] - *other SVG attributes that can be applied (strokeDasharray, strokeWidth, opacity, strokeLinecap...)*
* @property {*} [svg_*] - *parameters of the svg container created if the layer is not called inside a container (e.g svg_width)*
* @example
* // There are several ways to use this function
* geoviz.halfcircle(svg, { pos: [10,20], r: 15 }) // a single half-circle
* geoviz.halfcircle(svg, { data: cities, r: "population" }) // where svg is the container
* svg.halfcircle({ data: cities, r: "population" }) // where svg is the container
* svg.plot({ type: "halfcircle", data: cities, r: "population" }) // where svg is the container
* geoviz.halfcircle({ data: cities, r: "population" }) // no container
*/
export function halfcircle(arg1, arg2) {
// Test if new container
let newcontainer =
(arguments.length <= 1 || arguments[1] == undefined) &&
!arguments[0]?._groups
? true
: false;
arg1 = newcontainer && arg1 == undefined ? {} : arg1;
arg2 = arg2 == undefined ? {} : arg2;
// Arguments
const options = {
mark: "halfcircle",
id: unique(),
data: undefined,
r: 20,
k: 50,
pos: [0, 0],
dx: 0,
dy: 0,
cornerRadius: 2,
innerRadius: 0,
angle: 0,
sort: undefined,
descending: true,
fixmax: null,
fill: random(),
stroke: "white",
tip: undefined,
tipstyle: undefined,
};
let opts = { ...options, ...(newcontainer ? arg1 : arg2) };
// New container
let svgopts = { domain: opts.data || opts.datum };
Object.keys(opts)
.filter((str) => str.slice(0, 4) == "svg_")
.forEach((d) => {
Object.assign(svgopts, {
[d.slice(0, 4) == "svg_" ? d.slice(4) : d]: opts[d],
});
delete opts[d];
});
let svg = newcontainer ? create(svgopts) : arg1;
// init layer
let layer = svg.selectAll(`#${opts.id}`).empty()
? svg.append("g").attr("id", opts.id)
: svg.select(`#${opts.id}`);
layer.selectAll("*").remove();
if (!opts.data) {
opts.coords = opts.coords !== undefined ? opts.coords : "svg";
}
if (opts.data) {
opts.coords = opts.coords !== undefined ? opts.coords : "geo";
opts.data =
implantation(opts.data) == 3
? centroid(opts.data, {
latlong:
svg.initproj == "none" || opts.coords == "svg" ? false : true,
})
: opts.data;
}
// zoomable layer
if (svg.zoomable && !svg.parent) {
if (!svg.zoomablelayers.map((d) => d.id).includes(opts.id)) {
svg.zoomablelayers.push(opts);
} else {
let i = svg.zoomablelayers.indexOf(
svg.zoomablelayers.find((d) => d.id == opts.id)
);
svg.zoomablelayers[i] = opts;
}
}
// Specific attributes
let entries = Object.entries(opts).map((d) => d[0]);
const notspecificattr = entries.filter(
(d) =>
![
"mark",
"id",
"coords",
"data",
"r",
"k",
"dx",
"dy",
"cornerRadius",
"innerRadius",
"transform",
"angle",
"sort",
"descending",
"fixmax",
"tip",
"tipstyle",
"pos",
].includes(d)
);
// Simple half circle
if (!opts.data) {
let projection = opts.coords == "svg" ? d3.geoIdentity() : svg.projection;
let path = d3.geoPath(projection);
notspecificattr.forEach((d) => {
layer.attr(camelcasetodash(d), opts[d]);
});
let pos = path.centroid({ type: "Point", coordinates: opts.pos });
layer
.append("path")
.attr(
"transform",
`rotate(${opts.angle} ${pos[0] + opts.dx} ${
pos[1] + opts.dy
}) translate(${pos[0] + opts.dx} ${pos[1] + opts.dy})`
)
.attr(
"d",
d3
.arc()
.outerRadius(opts.r)
.innerRadius(opts.innerRadius)
.startAngle(-Math.PI / 2)
.endAngle(Math.PI / 2)
.cornerRadius(opts.cornerRadius)()
)
.attr("visibility", isNaN(pos[0]) ? "hidden" : "visible");
} else {
let projection =
opts.coords == "svg"
? d3.geoIdentity().scale(svg.zoom.k).translate([svg.zoom.x, svg.zoom.y])
: svg.projection;
let path = d3.geoPath(projection);
// Centroid
opts.data =
implantation(opts.data) == 3
? centroid(opts.data, {
latlong:
svg.initproj == "none" || opts.coords == "svg" ? false : true,
})
: opts.data;
// layer attributes
let fields = propertiesentries(opts.data);
const layerattr = notspecificattr.filter(
(d) => detectinput(opts[d], fields) == "value"
);
layerattr.forEach((d) => {
layer.attr(camelcasetodash(d), opts[d]);
});
// features attributes (iterate on)
const eltattr = notspecificattr.filter((d) => !layerattr.includes(d));
eltattr.forEach((d) => {
opts[d] = check(opts[d], fields);
});
// Projection
opts.coords == "svg"
? d3.geoIdentity().scale(svg.zoom.k).translate([svg.zoom.x, svg.zoom.y])
: svg.projection;
// Radius
let data = opts.data;
let columns = propertiesentries(data);
let radius = attr2radius(opts.r, {
columns,
geojson: opts.data,
fixmax: opts.fixmax,
k: opts.k,
});
// Sort & filter
data = data.features
.filter((d) => d.geometry)
.filter((d) => d.geometry.coordinates != undefined);
if (detectinput(opts.r, columns) == "field") {
data = data.filter((d) => d.properties[opts.r] != undefined);
}
data = order(data, opts.sort || opts.r, {
fields: columns,
descending: opts.descending,
});
// Drawing
layer
.selectAll("path")
.data(data)
.join((d) => {
let n = d
.append("path")
.attr(
"transform",
(d) =>
`rotate(${opts.angle} ${path.centroid(d.geometry)[0] + opts.dx} ${
path.centroid(d.geometry)[1] + opts.dy
}) translate(${path.centroid(d.geometry)[0] + opts.dx} ${
path.centroid(d.geometry)[1] + opts.dy
})`
)
.attr("d", (d) =>
d3
.arc()
.outerRadius(radius(d, opts.r))
.innerRadius(opts.innerRadius)
.startAngle(-Math.PI / 2)
.endAngle(Math.PI / 2)
.cornerRadius(opts.cornerRadius)()
)
.attr("visibility", (d) =>
isNaN(path.centroid(d.geometry)[0]) ? "hidden" : "visible"
);
eltattr.forEach((e) => {
n.attr(camelcasetodash(e), opts[e]);
});
return n;
});
// Tooltip & view
if (opts.tip) {
tooltip(
layer,
opts.data,
svg,
opts.tip,
opts.tipstyle,
fields,
opts.view
);
}
if (!opts.tip && opts.view) {
viewof(layer, svg);
}
}
// Output
if (newcontainer) {
const size = getsize(layer);
svg
.attr("width", size.width)
.attr("height", size.height)
.attr("viewBox", [size.x, size.y, size.width, size.height]);
return render(svg);
} else {
return `#${opts.id}`;
}
}
// convert r attrubute to radius function
function attr2radius(attr, { columns, geojson, fixmax, k } = {}) {
switch (detectinput(attr, columns)) {
case "function":
return attr;
case "field":
let radius = computeradius(
geojson.features.map((d) => d.properties[attr]),
{
fixmax,
k,
}
);
return (d, rr) => radius.r(d.properties[rr]);
case "value":
return (d) => attr;
}
}